HANARO SANS Instruments at KAE RI, Korea

November 20, 2011 Tsukuba, Japan

Young Soo Han¹, Baek Seok Seong ¹and Man Ho Kim²

- 1. Korea Atomic Energy Research Institute
- 2. Korea Institute of Science and Technology

Contents

- 1. Introduction to HANARO
- 2. History of HANARO SANS Instruments.
- **3. Current SANS Instruments**
- 4. Performance and Activities of SANS
- 5. Closing remarks

HANARO Reactor

HANARO Complex

Reactor Structure and Characteristics

Reactor Hall, 2011

HANARO Neutron Beam Instruments

History of SANS Instrument at HANARO

- July 1997 : Development of 9m SANS Instrument at reactor hall sta rted
- Sep. 2001 : 9m SANS instrument was opened to outside users
- July 2003 : Cold Neutron Research Facility(CNRF) Project was laun ched
- -> Upgrade and relocation of 9m SANS instrument and development of new 40m SANS instrument were included in the project
- May 2007 : Period of CNRF project changed from 5 yrs to 7 yrs
- Sep. 2007 : Development of KIST-USANS started
- April 2010 : The CNRF project was finished
- Nov. 2010 : 18M/40M SANS instruments were opened to outside us ers
- Present : 18M/40M SANS instruments are operating(over 200 days) and KIST-USANS is in commissioning stage

9

9m SANS Instrument(2001-2008)

- Installed @CN port in 2001
- Sample Environment
- Circulation bath (- 20~80C)
- Heating block (RT~200C)
- Electromagnet (0~1.5 T)

Design Characteristics

- γ /n Filter LN₂ cooled Bi/Be filter
- λ 4.3 ~ 8.5 0.85 Å (by NVS), Δλ/λ(FWHM)~10%
- Collimator Pin hole type
- **Detector** 2D-PSD(³He), 65x65cm² with 5mm² resolution
- Sample 5~15mm diameter
 Q-range 0.06 to 6nm⁻¹
- Q-range 0.06 to 6nm⁻¹
 Flux @sample : Q_{min}(nm⁻¹)
- r lux @sample.
- **I_s (n/cm²⋅s)** 5 x 10³ 1 x 10⁴ 1 x 10⁵

Applications

0.06

0.1

1.0

- Defects in metallic and ceramic materials
- Critical phenomena in phase transitions
- Kinetics of diffusion controlled phase separation
- Complex liquids (microemulsions, colloids, LC ...)
- Structure and morphology of polymer systems
- Structural studies of biological macromolecules.

40M SANS Instrument

History

 April. 2008 : 1st fabrication was ordered (Detector Vessel)

- Sep. 2009 : 1st cold N-beam arrived
- Nov. 2009 : Major hardware was finished
- Feb. 2010 : First SANS data was obtained
- Nov. 2010
 Open to users⁵

Principal Investigator	Sung-Min Choi (KAIST)	Project Management Decision on the Top Level Spec. Promotion of Scientific Program for SANS
HANARO Staff Instrument Scientist	Young-Soo Han	Co-work with PI for the Top Level Spec. Identification of the Detailed Tech. Spec. Supervision of Engineering Group

18M SANS Instrument

Dr. Baek Seok Seong

History

- June 2008 : Old 9m SANS was dismantled
- Sep. 2008 : Upgrade plan has changed (12m -> 18m)
- Dec. 2008 : 1st fabrication ordered (Collimator box)
- Nov. 2010 : Open to users $^{\flat}$

11

Main Instrument Parameters

Parameter	40M SANS	18M SANS
Total Instrument Length (m)	40	18
Detector Dimensions (cm ²)	100 x 100	64 x 64
Detector Resolution (cm ²)	0.5 x 0.5	
Detector supplier	ORDELRA, 21000N	ORDELRA, 2660N
Velocity selector supplier	ASTRIUM	
Source to sample distance (m)	2 - 20 (steps : 2m)	3 - 9 (steps : 2m)
Sample to detector distance (m)	1.1 – 19.8	1 .3– 9
Max. detector offset (cm)	50	30
Q-range (Å ⁻¹) (with lenses)	0.001 – 1.0 (>0.0007)	0.003 – 0.5
Neutron polarizer	YES	To be installed
Refractive Focusing Optics	YES	To be installed

13

HANARO SANS Personnel

Title	40M SANS	18M SANS
1 st Instrument Scientist	Dr. Young-Soo Han	Dr. Baek-Seok Seong*
2 nd Instrument Scientist	Dr. Tae-Hwan Kim	Dr. Eun-Joo Shin
Post-doc	-	Dr. Tae-Kyu Shin
Researcher	Mr. Jong-Dae Jang	Mr. Han-Sik Jeon

* Dr. Seong is also a leader of the project named of "Development of Industrial Application Techniques by neutron Scattering"♪

KIST-USANS

- Dr. Man Ho Kim is responsible of KIS T-UANS
- KIST : Korea Institute of Science and Technology

Features of KIST-USANS

- (Resolution) Qmin ~ 5x10⁻⁵ Å⁻¹ for I=4 Å & Qmin~4x10⁻⁵ 2 Å
- □ (Wavelength) =4 Å & 2 Å
- □ (Focusing) vertically focusing with OPG(002) (div.=0.4±0.1°)
- □ (Flux at Monochromator) ~ 1.2×10^7 #/cm²se c for l=4 Å , ~ 6×10^5 for l=2 Å
- (Monochromator & Analyzer) channel-cut Si (111)
- \Box (Measurable Size) submicron to ~ 20 um
- (Low background) due to the curved guide (R=600 m)
- (High S/N) due to multiple reflections on the channel-cut crystals
- (Multiple Scattering) can be checked and red uced by a factor of 4
- (Economics) reduce the measurement time b y a factor of 2~3

Q range of SANS

17

Neutron Flux at Sample Position in 40M SAN\$

Wavelength of 5Å Collimation length of1.7 m Measured using gold foil. Measured using neutron monitor Y-scale is calibrated using the data measu red with gold foil.

MgF2 Focusing Lenses in 40M SANS Surfactant Vesicle • Scattering Intensity (cm⁻¹) 10³ Up to 0.0007 Å⁻¹ 10² 10¹ 10⁰ 10⁻¹ 0.001 0.01 0.1 q (Å⁻¹) Wavelength of 7.49 Å for lense, 6Å SDD = 19.85m(lense), 5m, 1.16m Q range = 0.0007 – 0.7 Å^{-1,♭}

Sample Environments in SANS

✤Temperature Control

Heating/Cooling (-10C~80C)

Magnetic Field

Horizontal Field Electromagnet (1.5T)

Pressure cell

Furnace (~600C)

~ 3 kbar & Heating

21

67th – 73th Cycles(From Nov. 2010 – June 2011) Beam Time Distribution by User 40M SANS **18M SANS** Foreign User Foreign User 3% 4% Project User 21% General User Instrument Maintenance 43% 31% General User 40% Instrument KAERI Maintenance KAERI Research 13% 31% Research 14% Beam Time Distribution by Topics 40M SANS **18M SANS** Others(Bio Others(Bio aterials) materials) 11% complex fluid Polymer Polymer 23% 18% 14% Complex Fluid Materials 56% Science 17% Materials Science 57% 22

SANS Experiments by Foreign Users

U. Of Sydney@ 18M SANS

Ibaraki Univ. @ 18M SANS

U. Of Adelaide@ 40M SANS

U. Of Tokyo@ 40M SANS

Sumitomo Rubber@ 40M SANS>

23

Guide for Beam Time Request

- Basically, the HANARO instruments are to be offered, after going through a commissioning process, for open use by outside resear chers.
- There are two kinds of beam time request processes depending on the instruments. One is general request and the other is on-d emand request.
 - * General request : 2 SANS instruments, HRPD and FCD
 - * On-demand request : NRF, ENF and RSI
- For general requests, calls for proposals are issued approximately twice a year.
- Our instruments are open for use by foreign users as well.
- In case the users' demand for beam time exceeds our capacity, t he users' proposals should be subject to a peer review.
- Users can submit their applications for the beam time on our we bsite: http://hanaro4u.kaeri.re.kr.

HANARO4U

Concerns & Challenges

- Solo practice by users is prohibited for security concerns.
- There is no budget set aside exclusively for instrument ope ration and user support.
- Korea has no more than ten experienced SANS user groups
- There are no advanced sample environments such as a su perconducting magnet, a rheometer, etc.
- Technical support for instrument maintenance is extremely limited.
- At the moment, the cold neutron flux would O.K. The flux i s not stable.

